Symplectic Hamiltonian finite element methods for linear elastodynamics
نویسندگان
چکیده
We present a class of high-order finite element methods that can conserve the linear and angular momenta as well energy for equations elastodynamics. These are devised by exploiting preserving Hamiltonian structure show several mixed element, discontinuous Galerkin, hybridizable Galerkin (HDG) belong to this class. discretize semidiscrete system in time using symplectic integrator order ensure properties resulting methods, which called methods. For particular HDG method, we obtain optimal error estimates present, numerical experiments confirm its orders convergence all variables conservation properties.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite Element Methods for Linear Elasticity
Conditions for Stable Approximation Schemes Basic idea: Mimic structure of continuous problem. To establish stability of continuous problem, only used last two spaces in top sequence and last three spaces in bottom sequence. Λn−1(K) dn−1 −−−→ Λn(K)→ 0 ↗ Sn−2 ↗ Sn−1 Λn−2(V) dn−2 −−−→ Λn−1(V) dn−1 −−−→ Λn(V)→ 0. Thus, look for five finite dimensional spaces connected by a similar structure, i.e.,...
متن کاملDiscontinuous Hamiltonian Finite Element Method for Linear Hyperbolic Systems
We develop a Hamiltonian discontinuous finite element discretization of a generalized Hamiltonian system for linear hyperbolic systems, which include the rotating shallow water equations, the acoustic and Maxwell equations. These equations have a Hamiltonian structure with a bilinear Poisson bracket, and as a consequence the phase-space structure, “mass” and energy are preserved. We discretize ...
متن کاملSymplectic-mixed finite element approximation of linear acoustic wave equations
We apply mixed finite element approximations to the first-order form of the acoustic wave equation. The semidiscrete method exactly conserves the system energy. A fully discrete method employing the symplectic Euler time method in time exactly conserves a positive-definite pertubed energy functional that is equivalent to the actual energy under a CFL condition. In addition to proving optimal-or...
متن کاملSymplectic-mixed Finite Element Approximation of Linear Wave Equations
We apply mixed finite element approximations to the first-order form of the acoustic wave equation. Our semidiscrete method exactly conserves the system energy, and we show that with a symplectic Euler time discretization, our method exactly conserves a perturbed energy quantity that is positive-definite and equivalent to the actual energy under a CFL condition. In addition to proving optimal-o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2021
ISSN: ['0045-7825', '1879-2138']
DOI: https://doi.org/10.1016/j.cma.2021.113843